Computational Environments for Integration of Geophysics and Reservoir Simulation

An overview of the NSF/ITR projects:

The Data Intense Challenge: The Instrumented Oil Field of the Future (2001-2005)

Mary F. Wheeler

Computational Environments for Integration of Geophysics and Reservoir Simulation
The Instrumented Oil Field

Assimilate data & reservoir properties into the evolving reservoir model

Detect and track changes in reservoir changes during production

Model Driven

Data Driven
DYNAMIC DATA DRIVEN SUBSURFACE SYSTEMS

Complex Geosystem Management

- Uncertainty Assessment
- Sensor Data Management
- Characterization & Imaging
- Sensor Placement
- Optimization and Control
- Multiscale Simulation
- Data Management
- 3D Visualization & Interpretation
- Geophysical Interpretation
- Petrophysical Interpretation
- Multiphysics Simulation

Mary F. Wheeler
Computational Environments for Integration of Geophysics and Reservoir Simulation
Accomplishments

Models

Simulation

Optimization

Data

Multiphysics

Instrumented Landfill

Underground Pollution

Deep GeoM

Multialgorithmic

Fully Implicit

IMPES

IMPES

IMPES

IMPES

Multiphysics

Chemistry

Compositional

Black-oil

Thermal

Multiscale

Optimization

Optimal Scheduling

Optimal Well Placement

History Matching

Seismic data

Visualization

Flow data

Flow data Management

Mary F. Wheeler
Computational Environments for Integration of Geophysics and Reservoir Simulation
Accomplishment: Grid-enabled Production and Reservoir Management

Seismic Data Simulation Tools

Reservoir Performance

Data Analysis

Grid-based Data Management and Manipulation Tools: DataCutter

Datasets from Simulations and Field Measurements

Reservoir Characterization

Oil Reservoir Simulation Tools

Data Analysis

Visualization Tools

Production Forecasting

Discover: Web, Steering, Collaborative Portals

Reservoir Monitoring Field Measurements

Datasets from Simulations and Field Measurements

Mary F. Wheeler
Computational Environments for Integration of Geophysics and Reservoir Simulation
Accomplishment:
Sensitivity Analysis of Flow and Simulation
DDDAS: Integration of Data, Models, and IT

DYNAMIC DATA COLLECTION
- Remote sensing
- Monitoring
- Data assimilation

REDUCTION OF UNCERTAINTY

COMPUTATIONAL SCIENCE
- CS tools
- Numerical algorithms

E-Fields, Seismic Surveys, Well Logging, Smart Wells

Mary F. Wheeler
Computational Environments for Integration of Geophysics and Reservoir Simulation
Publications and Invited Presentations:

- SEG, SPE, AGU, EAGE, SIAM, IEEE, ACM, Supercomputing

Workshops at

- DARPA, NASA, DOE, DOD, NSF

Academic, Industrial and Governmental colloquia and meetings