MIPS: A Real-Time Measurement-Inversion-Prediction-Steering Framework for Hazardous Events

V. Akcelik (Stanford SLAC)
G. Biros (University of Pennsylvania)
A. Borzi (Graz)
A. Draganesescu (Sandia, NM)
J. Hill (Sandia, NM)
O. Ghattas (UT Austin)
B. Van Bloemen Waanders (Sandia, NM)
K. Willcox (MIT)
Outline

• Motivation
• MIPS: Measurement-Inversion-Prediction-Steering
• Completed work
 o Massively parallel real-time inversion
• Ongoing work
 o Uncertainty estimation, goal-oriented model reduction
• Future work
 o More complex wind fields and coupling with MM5, uncertainty propagation, optimal steering of sensors
Motivation

• DHS 15 disaster scenarios for emergency planning
• Radiological attack
 o Nuclear detonation (15Ktn)
 o “Dirty Bomb”
• Biological attack (Aerosolized Anthrax)
• Chemical attack
 o Toxic industrial chemicals
 o Nerve, blister agent, chlorine tank explosion
• Natural disasters
 o Hurricanes
Motivation

- 9 cases involving airborne contamination event
- Response
 - Early detection, invert for initial conditions
 - Prediction of transport
 - Sensor steering/uncertainty steering

NYT, March 16, 2005
Typical scenario

- Greater Los Angeles Basin
- Wind from mesoscale models (MM5)
- Sparse sensor readings of concentration
- Inversion for initial condition
MIPS: Measurement, inversion, prediction, steering

- **Measurement**
 - First response: inversion with reduced order model to guide first response teams

- **Inversion**
 - Sensor-data-driven estimation of initial conditions

- **Prediction**
 - Statistical estimation of uncertainty, propagated to future predictions

- **Steering**
 - Sensor steering to minimize uncertainty of prediction
Continual application of MIPS framework

Second-to-minutes decision-making scale
 o Reduced order models (generated by precomputation)
 inversion, prediction, steering

 • Minutes-to-hours decision-making scale
 o High-fidelity, high-resolution PDEs
 Inversion, prediction, steering
Mathematical formulation

• Given wind v, diffusivity k, observations u^*, and a terrain model, estimate initial condition u_0:

$$
\min_{u,u_0} \sum_j \int_{\Omega} \int_T (u - u^*)^2 \delta(x - x_j) \, dx \, dt + \frac{\beta}{2} \int_{\Omega} u_0^2 \, dx
$$

subject to

$$
\begin{align*}
 u_t - k \Delta u + v \cdot \nabla u &= 0 \quad \text{in } \Omega \times (0, T) \\
 u &= u_0 \quad \text{in } \Omega \times \{t = 0\} \\
 k \nabla u \cdot n &= 0 \quad \text{on } \Gamma_N \times (0, T) \\
 u &= 0 \quad \text{on } \Gamma_D \times (0, T)
\end{align*}
$$

• Then forward problem can be used to predict transport contaminant
Inversion example

Inversion
Reconstruction

“Real” initial condition
Inversion example – comparison over time
Optimality conditions – PDE form

State equation:

\[u_t - k \Delta u + v \cdot \nabla u = 0 \text{ in } \Omega \times (0, T) \]
\[u = u_0 \text{ in } \Omega \times \{t = 0\} \]
\[k \nabla u \cdot \mathbf{n} = 0 \text{ on } \Gamma_N \times (0, T) \]
\[u = 0 \text{ on } \Gamma_D \times (0, T) \]

Adjoint equation:

\[-p_t - k \Delta p - \nabla \cdot (vp) = - \sum_j (u - u^*) \delta(x - x_j) \text{ in } \Omega \times (0, T) \]
\[p = 0 \text{ in } \Omega \times \{t = T\} \]
\[k \nabla p \cdot \mathbf{n} = 0 \text{ on } \Gamma_N \times (0, T) \]
\[p = 0 \text{ on } \Gamma_D \times (0, T) \]

Inverse equation:

\[-\beta u_0 - p|_{t=0} = 0 \text{ in } \Omega \]
Optimality conditions – operator form

Discretized optimality system:

\[
\begin{bmatrix}
B^T B & 0 & A^T \\
0 & \beta R & -T^T \\
A & -T & 0
\end{bmatrix}
\begin{bmatrix}
u \\
u_0 \\
p
\end{bmatrix}
=
\begin{bmatrix}
B^T B u^* \\
0 \\
0
\end{bmatrix}
\]

Reduced Hessian system:

\[(T^T A^{-T} B^T B A^{-1} T + \beta R) u_0 = -T^T A^{-T} B^T B u^*
\]

where

- \(A\): forward operator
- \(A^T\): adjoint operator
- \(R\): regularization operator
- \(B\): observation operator
- \(T\): extension of \(\Omega\) into \(\Omega \times (0, T)\)
Motivation for reduced space CG solver

At iteration k, CG solves the weighted least squares problem:

$$
\min_{P_k} ||e_k|| = \sum_i P_k[\lambda_i]^2 \xi_i^2 \lambda_i
$$

where P_k is polynomial of order k and

$$
e_0 = \sum_i \xi_i v_i, \quad Av_i = \lambda_i v_i, \quad i = 1, \ldots, N
$$
Motivation for reduced space CG solver

\[H := T^T A^{-T} B^T B A^{-1} T + \beta R \]
for \(\beta = 0 \)

Inverse operator

Smooth eigenvector

Rough eigenvector
Multigrid acceleration

• Problems with single level solver
 o Algorithmic scalability (# of Newton/QN iterations)
 o Global convergence
 Single grid

• Multilevel acceleration
 o Grid continuation
 o Nonlinear Multigrid: full approximation scheme
Full Multigrid

- Restriction
- Interpolation
- High-order Interpolation
Related work on multigrid

Multigrid for elliptic PDEs
 o Brandt, Hackbusch
 o *Standard theory doesn’t apply to Fredholm-type equations* (typical in optimization)

• Multigrid for optimization
 o Ascher & Haber & Oldenburg, Borzi, Borzi & Kunisch, Borzi & Griesse, Chavent, Dreyer & Maar & Schultz, Draganescu, Lewis & Nash, Kaltenbacher, King, Ta’asan, Tau & Xu, Vogel

• Large-scale parallel multigrid/nested iteration
 o Akcelic, Biros & Ghattas, Akcelic et al.
Multigrid preconditioner for reduced Hessian

- Unpreconditioned (or $(\beta R)^{-1}$ preconditioned) CG is optimal for reduced Hessian – number of iterations is mesh independent
- However, for real time problems, this is not good enough – need to reduce constant!
- Problem: need effective preconditioner that does not require H to be explicitly formed
- Appropriate smoothing
2 level multigrid preconditioner

- **Spectral analysis:** (Draganescu, 2004):

\[H_h^{-1} \approx M_h \overset{\text{def}}{=} \beta^{-1}(I - P_h) + (H_{2h})^{-1}P_h \]

where \(P_h : V_h \rightarrow V_{2h} \) is the \(L^2 \)-orthogonal projection.

- \(\beta^{-1}(I - P_h) \) filters out high frequencies (smoother)

- Recursion \(\rightarrow \) multilevel preconditioner
Reduced Hessian spectra
Discretization/solver details

• Wind: laminar Navier-Stokes
• Solver: Matrix-free conjugate CG on reduced Hessian
 o MatVec(): 1 forward + 1 adjoint
• Forward/adjoint discretization:
 o SUPG/P1 (space), Crank-Nicolson (time)
 o Additive Schwarz-preconditioned GMRES
• No checkpointing
• PETSc (Argonne) implementation
Parallel multigrid performance and scalability on PSC EV68 AlphaCluster

Fixed size scalability: 257^4 space-time
~9 billion unknowns 3-level MG

<table>
<thead>
<tr>
<th>CPUs</th>
<th>multigrid preconditioner</th>
<th>no preconditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wallclock (hrs)</td>
<td>parallel efficiency</td>
</tr>
<tr>
<td>128</td>
<td>2.22</td>
<td>1.00</td>
</tr>
<tr>
<td>512</td>
<td>0.76</td>
<td>0.73</td>
</tr>
<tr>
<td>1024</td>
<td>0.48</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Isogranular scalability (fixed size/CPU)
~140 billion unknowns for max size, 3 level MG

<table>
<thead>
<tr>
<th>Grid size</th>
<th>CPUs</th>
<th>multigrid preconditioner</th>
<th>no preconditioner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>wallclock (hrs)</td>
<td>iterations</td>
</tr>
<tr>
<td>129^4</td>
<td>16</td>
<td>1.05</td>
<td>8</td>
</tr>
<tr>
<td>257^4</td>
<td>128</td>
<td>2.22</td>
<td>6</td>
</tr>
<tr>
<td>513^4</td>
<td>1024</td>
<td>4.89</td>
<td>5</td>
</tr>
</tbody>
</table>
LA Basin example details

- Topography: USGS GTOPO30 digital elevation (1 km resolution)
- LA Basin: 360 km x 120 km x 5 km
 - 1 km horizontal grid size (max elevation = 3.5 km)
- Topography-conforming logically-rectangular split-hex-based linear tetrahedral mesh
 - 361 \times 121 \times 21 = 917,301 grid points
 - \frac{1}{4} 74M total space-time variables
- Gaussian-shaped plume:
 - \(u_0 = 20 \exp(-0.04|x-x_c|) \)
 - centered at \(x_c = (120,60,0) \) km
- Inflow:
 - \(v_{\text{max}}(z/(5.0-z_{\text{surface}}))^{0.1} \)
 - \(v_{\text{max}} = 30 \text{ km/hr} \)
- Sensors: every 3 minutes for 120 minute simulation
- 64 processors of AlphaCluster at PSC
Numerical studies of inversion sensitivity

- Density of sensor array
 - \(6 \leq 6 \leq 6, 11 \leq 11 \leq 11, 21 \leq 21 \leq 21\)
- Regularization parameter
 - \(\beta = 1, 0.1, 0.01, 0.001\)
- Peclet number
 - \(k = 0.05, 0.1, 0.2, 0.4\)
 - i.e. \(Pe = 10, 5, 2.5, 1.25\)
- Noise level of observations
 - \(\eta = 0\%, 5\%, 10\%\)
Sensitivity to sensor array density

6 × 6 × 6 Sensor Array 11 × 11 × 11 Sensor Array

21 × 21 × 21 Sensor Array Target Concentration
Sensitivity to sensors

<table>
<thead>
<tr>
<th>sensor array</th>
<th>$\frac{|u_{\text{target}} - u_{\text{predicted}}|2}{|u{\text{target}}|_2}$</th>
<th>$\frac{|u_{\text{target}} - u_{\text{predicted}}|\infty}{|u{\text{target}}|_\infty}$</th>
<th>time</th>
<th>iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6 \times 6 \times 6$</td>
<td>0.7925</td>
<td>0.9800</td>
<td>2:01:47.11</td>
<td>377</td>
</tr>
<tr>
<td>$11 \times 11 \times 11$</td>
<td>0.4953</td>
<td>0.8700</td>
<td>2:20:02.65</td>
<td>437</td>
</tr>
<tr>
<td>$21 \times 21 \times 21$</td>
<td>0.3387</td>
<td>0.8050</td>
<td>2:33:11.72</td>
<td>484</td>
</tr>
</tbody>
</table>
Sensitivity to regularization

<table>
<thead>
<tr>
<th>β</th>
<th>$|e|_{L_2}$</th>
<th>$|e|_{\infty}$</th>
<th>time</th>
<th>iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.6244e+02</td>
<td>1.96e+01</td>
<td>1:10:15.81</td>
<td>212</td>
</tr>
<tr>
<td>0.1</td>
<td>2.6938e+02</td>
<td>1.88e+01</td>
<td>1:14:00.97</td>
<td>211</td>
</tr>
<tr>
<td>0.01</td>
<td>2.1077e+02</td>
<td>1.74e+01</td>
<td>2:20:10.29</td>
<td>437</td>
</tr>
<tr>
<td>0.001</td>
<td>1.8488e+02</td>
<td>1.67e+01</td>
<td>5:24:35.65</td>
<td>1078</td>
</tr>
</tbody>
</table>
Sensitivity to diffusion coefficient

<table>
<thead>
<tr>
<th>diffusion coefficient</th>
<th>$| e |_2$</th>
<th>$| e |_\infty$</th>
<th>time</th>
<th>iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>2.1077e+02</td>
<td>1.74e+01</td>
<td>2:18:39.94</td>
<td>437</td>
</tr>
<tr>
<td>0.10</td>
<td>2.3565e+02</td>
<td>1.82e+01</td>
<td>0:51:35.30</td>
<td>140</td>
</tr>
<tr>
<td>0.20</td>
<td>2.6291e+02</td>
<td>1.87e+01</td>
<td>1:07:38.93</td>
<td>195</td>
</tr>
<tr>
<td>0.40</td>
<td>2.8654e+02</td>
<td>1.91e+01</td>
<td>1:33:44.02</td>
<td>275</td>
</tr>
</tbody>
</table>
Sensitivity to noise

<table>
<thead>
<tr>
<th>Noise</th>
<th>$|e|_L^2$</th>
<th>$|e|_\infty$</th>
<th>time</th>
<th>iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.1077e+02</td>
<td>1.74e+01</td>
<td>2:20:10.29</td>
<td>437</td>
</tr>
<tr>
<td>5</td>
<td>2.1167e+02</td>
<td>1.74e+01</td>
<td>2:40:24.02</td>
<td>506</td>
</tr>
<tr>
<td>10</td>
<td>2.1278e+02</td>
<td>1.75e+01</td>
<td>3:01:52.31</td>
<td>581</td>
</tr>
</tbody>
</table>
Summary of completed work

- Simplified model of atmospheric transport
 - Simple wind, no deposition, no chemical reactions
- PETSc based implementation
- Scalability of parallel multigrid preconditioner
- ~17 million parameter inversion problem:
 - 29 minutes on 1024 Alpha processors
- ~140 billion KKT unknowns solved in <5h on 1K procs
 - Parallel systems with 10-100X # of 10X faster processors in use
- **achieved real-time high-resolution inversion**
 - (based on simplified “weather” model)
Ongoing and future work

- Estimate/propagate uncertainty in initial conditions
 - Principal eigenvectors of inverse Hessian approximation of the covariance provide modes of uncertainty
- Reduced order models for rapid response
 - Need reduced models that can handle large initial condition spaces
- Steer sensors to new locations to reduce uncertainty
- Wind velocity from weather model is great source of uncertainty invert for velocity field from sensor data and weather model
 - Turbulent wind fields, couple with MM5, nonlinear inverse problem
Acknowledgments

- DOE: TOPS: Terascale Optimal simulations
 - www.tops-scidac.org
- CSRI Sandia
- NSF ITR, DDDAS
- PSC
- PETSc
Global optimum: Island of Santorini