A Wireless Sensor Network based Closed-loop System for Subsurface Contaminant Plume Monitoring

Qi Han, Computer Science, Colorado School of Mines

Anura P. Jayasumana, Electrical and Computer Engineering, Colorado State University

Tissa Illangasekare, Toshihiro Sakaki, Environmental Science and Engineering, Colorado School of Mines
Motivation:
monitoring and predicting groundwater contamination

[Diagram showing groundwater flow and contamination source]
Goal 1: Virtual Sensor Networks

- Formed by a subset of nodes dedicated to a certain task or application at a given time

Benefits

- Enable collaboration among sensor networks deployed within the same geographical area
- Enable coherence among dynamically varying subset of sensors
- Enhance performance, resource sharing, scalability, simplified application deployment, security, etc.
- Applicable to a broad class of problems
Goal 2: A Closed-loop System Architecture

- Wireless Sensor Network
 - Model Feedback
 - Sensor data
 - Inverse Model (System Identification)
 - Calibrated Model Parameters
 - Forward Model (Prediction)
 - Decision/optimization Model
 - State variables
 - Goals Match
 - No
 - New design/Strategy
Sensor noise, calibration drift, and network faults are important concerns which require a robust solution.
Issue 1:
REDFLAG: A REal-time, Distributed, Flexible, Lightweight, and Generous Fault Detection Service

- Sensor Reading Validity subservice for detecting abnormal sensor readings
- Network Status Report subservice
Sensor Reading Validity Subservice

- (in)validate sensor readings using a set of rules:
 - Noisy reading: standard deviation exceeds an expected noise threshold
 - NLDR reading: sensor value falls outside the range of calibration
 - Out of range reading: sensor value falls outside the total detection range
 - Stuck reading: an unusually steady set of readings
 - Abruptly changed reading: the rate of value changes exceeds a threshold
Network Status Report Subservice

- **Local Detection Phase**
 - each node monitors neighboring nodes and identifies suspicious ones

- **Neighbor Consensus Phase**
 - each node corroborates previous findings with neighbors before reporting any alarms
Performance of Sensing Reading Validity Subservice

![Bar chart showing % Faults Detected with various parameters: $\sigma_{min}=0.01$, $\sigma_{min}=0.007$, $\Delta_{max}=0.02$, $\Delta_{max}=0.1$, $\sigma_{max}=5.2$]
Performance of Network Status Report Subservice

[Graphs showing network performance metrics for different node counts and accuracy levels.]
Issue 2:
Real-time Automatic Calibration Transport Model

Relative Concentration Plot of Conservative I
Prediction Error after Each Model Calibration

Error Between Predicted and True Observation

SSE
Time for Transport Model Calibration

Transport Model Calibration Time

![Graph showing transport model calibration time](image-url)
Findings from Completed Studies

- Available transport modeling codes and inverse techniques may be employed to perform RAC in the context of a WSN under the following provisions:
 - Available observations contain no noise or faults
 - There is sufficient resources available to complete the inversions
 - Initial, boundary, and source conditions are known
 - The contaminant behaves conservatively

- Next step
 - Integrate REDFLAG
Current Status

http://alamode.mines.edu/~qhan

- **Completed Work**
 - preliminary proof-of-concept study in an intermediate tank test bed
 - fault detection service
 - real-time automatic calibration of an existing transport model

- **Ongoing Work**
 - phenomena-aware clustering
 - detection and tracking of amorphous events with dynamic signatures
 - set up of a larger tank test bed

- **Future Work**
Project Team

- **Faculty**
 - Computer Science: Qi Han
 - Electrical and Computer Engineering: Anura
 - Environmental Science and Engineering: Tissa Illangaskare, Toshihiro Sakaki

- **Students**
 - Computer Science: Nick Hubbell, Inigo Urteaga