Dynamic Execution of a Business Process via Web Service Selection and Orchestration

Dr. Muhammad Fahad
Post-Doc, ULL
Title: Dynamic Execution of a Business Process via Web Service Selection and Orchestration

Authors: Muhammad Fahad, Néjib Moalla, Yacine Ourzout

Université Lumière Lyon2
Dynamic Execution of a Business Process...

Outlines

- Introduction
- Related Work
- Semantic BP Execution Engine
- Conclusion and Perspectives

ICCS 2015

6/15
M. Fahad
• Business Process
 – “A workflow system automates a business process, in whole or in part, during which documents, information, or tasks are passed from one participant to another for action, according to a set of procedural rules” Papazoglou

• Modeling Notations
 – Business Process Modeling Notation (BPMN), Workflow, Petri Net, Unified Modeling Language (UML) and Business Process Modeling Language (BPML)
Business Process Modeling Notation (BPMN)

- Proposed by *Business Process Management Initiative (BPMI)* is used to model business process within a workflow.
- Comprise of various graphical components to model the specification of a business process. There is a mapping between each of the BPMN notation and the implementation and execution languages.

Fundamental Building Block: SOA

- According to the Zap survey about 50% of enterprises build their solution on SOA, while more than 25% planned to use it within the near future.
• Dynamic Execution of BP
 – challenging and elusive task especially when the service task has to be executed based on user requirements at the runtime.
 – via Web Service Selection and Orchestration

• Two Approaches for BP execution
 – Direct call within BP
 – Via Intermediate Class/Method
• Web service selection
 – is a hard task when there is a list of pertaining services with similar functionalities that fulfil user requirements.
 – It becomes more challenging when we know our requirements at runtime

• *Service Orchestration*
 – deals with the mechanism in which the involved web services are under control of a single endpoint central process (another web service)
 – invoked web services neither know that they are involved in a composition process
Approaches for Dynamic Execution of Business Process

- Direct call within BP
 - Complex, manual interface
 - No Dynamic Execution
 - Fast
 - Not flexible, hard code
 - Change in service leads to Change in BP

- Via Intermediate Class
 - Simple & middle layer
 - Allows Dynamicity
 - Slow
 - Flexible, change in class
 - Change in service leads no Change in BP

6/1/15

M. Fahad
Dynamic Execution of a Business Process...

Introduction
Related Work
Semantic BP Execution Engine
Conclusion and Perspectives

Dynamic Execution

Via Intermediate Class/Method
Dynamic Execution of a Business Process... ICBS 2015

Dynamic Execution

Introduction
Related Work
Semantic BP Execution Engine
Conclusion and Perspectives

Via intermediate class or method
FITMAN Project

- **Mission**
 - Build industry-led use case trials in the Smart, Digital and Virtual Factories
 - Test and Assess FI-WARE Generic Enablers

- **Our Partner**
 - Plastic industry SME: APR

 Applications Plastiques du Rhone
• Current situation:
 – Paper based tracking for Order lifecycle
 – Lack of traceability throughout the interaction lifecycle
 – Lack of added value interaction with customers
 – Time consuming and tedious task of validation

• Solution
 – Dynamic Execution of Business Process
• Closest works
 – Casati et al. proposed an adaptive and dynamic service composition in EFlow platform for the static workflow generation. They formulated a graph for the composite services that includes services, decisions and events and also captured the order of execution inside the graph.
 – Schuster et al. designed enterprise processes by modeling and composing services in their Polymorphic Process Model (PPM). The interesting feature in PPM is that they model service as a state machine which encapsulates various possible states of a service and their order of execution. For the service composition, they perform reasoning on the state machine based on its transitions.

FITMAN Project

Related work
Semantic-Based Business Process Execution Engine
Steps Required

- BP parser that gets input process and deploys it for the execution.
- Service task annotator is responsible to analyze and annotate the service task with the semantic information.
- Implement an ontology-based match making algorithm for the invocation of desired web service.
Dynamic Execution of a Business Process...

Semantic BP Execution Engine

Introduction
Related Work
Semantic BP Execution Engine
Conclusion and Perspectives

BP Create Order

Customer
- Demand Order
- Register Demand

Sales Assistant
- Validate Customer Profile
 - guarantee ok: Update Customer Profile
 - guarantee not ok: Reject Order

Account Manager
- Validate Order
 - quote exists: Order Approved
 - Generate Receipt
 - quote does not exist: Order Rejected
 - Notify Rejection
Dynamic Execution of a Business Process...

Semantic BP Execution Engine

Semantic-Based Business Process Execution Engine

Introduction
Related Work
Semantic BP Execution Engine
Conclusion and Perspectives
User Interface
Dynamic Execution of a Business Process...

Project Ontology

- owl:Thing
 - Project_Data
 - Project_Files
 - BOM_conception
 - CAD_file
 - Plan_Document
 - Project_Package
 - Quote_Request
 - Specification_File
 - Project_Information
 - Delivery_Date
 - Designation
 - Index
 - Plan_Code
 - Project_Reference
 - Quantity
 - Project_Delivery
 - Extra_Speddy
 - Immediate
 - Regular_Delivery
 - Project_Size
 - Big
 - Medium
 - Mini
 - Small
 - Client_Info
 - ContactPerson_Information
 - ContactBy
 - Email
 - Fax
 - Phone
 - Name
 - FirstName
 - LastName
 - MiddleName
 - Position
 - Company_Information
 - Address
 - Code_APE
 - N_Siret
 - Title
 - TVA
 - Customer_Status_Information
 - Customer_Security_Info
 - Faulty
 - NoParticular_Status
 - Trustworthy
 - CustomerType
 - ordinary
 - Regular
 - VIP
Semantic Rules in SWRL

<table>
<thead>
<tr>
<th>Example</th>
<th>Semantic Repository based on SWRL Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Project</td>
<td>Project(?x) ∧ hasOrderQuantity(?x, ?y) ∧ LessThan(?y, 8) → Small_Project(?x)</td>
</tr>
<tr>
<td>Big Project</td>
<td>Project(?x) ∧ hasOrderQuantity(?x, ?y) ∧ greaterThan(?y, 20) → Big_Project(?x)</td>
</tr>
<tr>
<td>Immediate Delivery</td>
<td>Project(?x) ∧ DeliveryDate(?x, ?yMonth) ∧ ReceptionDate(?x, ?zMonth) ∧ subtract(?zMonth, ?yMonth, ?wMonth) ∧ LessThan(?wMonth, 2) → Immediate_Delivery_Project(?x)</td>
</tr>
<tr>
<td>Regular Delivery</td>
<td>Project(?x) ∧ DeliveryDate(?x, ?yMonth) ∧ ReceptionDate(?x, ?zMonth) ∧ subtract(?zMonth, ?yMonth, ?wMonth) ∧ greaterThan(?wMonth, 6) → Regular_Delivery_Project(?x)</td>
</tr>
<tr>
<td>Special Type Project</td>
<td>Project(?x) ∧ OrderedBy_Customer(?x, ?y) ∧ CustomerType(?y, VIP) → Special_Project(?x)</td>
</tr>
<tr>
<td>Faulty Customer</td>
<td>Customer(?x) ∧ CreditDue(?x, ?y) ∧ GuaranteeAmount(?x, z) ∧ LessThan(?z, 5000Euro) → Faculty_Customer(?x)</td>
</tr>
<tr>
<td>Regular Customer</td>
<td>Customer(?x) ∧ DeliveredOrder(?x, ?o) ∧ greaterThan(?o, 2) → Regular_Customer(?x)</td>
</tr>
</tbody>
</table>
Dynamic Execution of a Business Process ...

Semantic BP Execution Engine

Service Monitor and Reasoner

1. Annotate semantic info
 - Analyze task
 - Annotate semantics
 - Synonyms from WordNet

2. Select appropriate service

3. Execute service
 - Invoke web service
 - Complete task
 - Bundle result

Monitor and Reasoner

Web Service Selector
 - Ontology match making
 - Ontology based Reasoning
 - Select Best Service

Seman-tic BP Execu-on Engine

Introduction
Related Work
Semantic BP Execution Engine
Conclusion and Perspectives
• Web service selection is a hard task when there is a list of pertaining services with similar functionalities that fulfil user requirements.

• Ontology Driver Architecture can facilitate the desired objectives
 – SWRL based Semantic Rules help in decision making
 – Semantic match making to choose optimal web services accordingly or compose different services fulfilling individual requirements and attributes that carry out parts of complex business process or workflow.
References

- J. Saat and S. Discher. Economic Justification of SOA, Joint SAP, University of St. Gallen Research Study
- I. Horrocks et al., SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http://www.w3.org/Submission/SWRL/
Thank you for your attention.