Optimizing Dynamic Resource Allocation

Lucas Krakow, Louis Rabiet, Yun Zou, Guillaume Iooss, Sanjay Rajopadhye & Edwin Chong
Colorado State University
Outline

- UAV Resource Allocation
 - POMDP Formulation & Non-myopic Belief-state Optimization (NBO)
 - GPU Acceleration
 - Algorithmic advances
- Resource allocation for polyhedral programs & beyond
 - Dynamic dependences (Alphabets)
 - Non-polyhedral iteration spaces (while)
 - Dynamic resources for polyhedral programs
 - CART: Constant Aspect Ratio Tiling
UAV Resource Allocation

- Dynamic constraints
- Uncertain and stochastic
- Spatially varying measurement errors
- Data fusion and geometric synergy
- External factors
 - Obstacles (may also act as occlusions)
 - Wind
 - Aggression & evasion
Non-myopic Dynamic Control

- Problem is inherently dynamic
 - Must exploit feedback
 - Poor control actions at one time will lead to regret in the future
- Non-myopic: cannot just apply control action that optimizes performance at that time instant
- Aligned with DDDAS goals
Solution methodology

- Partially Observable Markov Decision Processes (POMDP)
- Solved using approximation method called NBO (nominal belief-state optimization)
GPU Acceleration

- Initial prototype: Matlab implementation using the `fmincom` library function.
- Main computational bottleneck: repeated calls to evaluate `objfuntrace`, the objective function to evaluate candidate solutions
 - 70% time, but in several thousand calls
- Solution: parallelize `objfuntrace` at fine grain, and also replace `fmincom` by an alternate coarse grain parallelization:
 - Nelder-Mead
 - Particle Swarm Optimization (PSO)
Fine grain parallelization

- Individual calls to `objfuntrace` have relatively small matrices and time horizons
- Must parallelize many independent calls to fully exploit GPU functionality
- 6-D iteration space, hand parallelized
 - Memory-parallelism tradeoffs (at all levels)
 - Matlab → C → CUDA (speedup = 2×10^3)
 - Mainly (2+ orders of magnitude) in Matlab → C
 - interpreted vs compiled
 - better memory management
 - 5-10x speedup in C → CUDA
Coarse grain

- Numerical precision: \texttt{fmincom} vs \texttt{PSO}
Algorithmic advances

- Extension for data association: Multi-Hypothesis Tracking. Need to modify
 - State & State transition law
 - include tracking state
 - Observation & observation law: MHT includes false alarms, missed detection, etc.,
 - Use a probabilistic model
 - Cost function
 - additional term for target ambiguity
 - Belief state
 - Distribution over states (one term is unobservable and updated via Bayes theorem – Kalman filter MHT)
Outline

- UAV Resource Allocation
 - POMDP Formulation & Non-myopic Belief-state Optimization (NBO)
 - GPU Acceleration
 - Algorithmic advances

- Resource allocation for polyhedral programs & beyond
 - Dynamic dependences (Alphabets)
 - Non-polyhedral iteration spaces (while)
 - Dynamic resources for polyhedral programs
 - CART: Constant Aspect Ratio Tiling
Dynamic polyhedral programs

- Extend the expressivity:
 - Alphabets: an extension of the polyhedral equational language Alpha
 - Iterative termination through unbounded polyhedra & fixed-point semantics
 - Non-affine dependences through uninterpreted functions
 - Rework mathematical closure properties
Compiling Alphabets

boolean cond(t); // cond will be evaluated at every iteration

affine counter {N | N>2} over {t|t>0} while cond(t)

inputs
 float Init{i|0<i<N};
 dep Z {n->j | 0<i<N && 1<=j<=2};

outputs
 float Y {n|0<n<N};

let
 Y[i,t] =
 case
 {|t==0}: Init[n,0];
 {|t<=n}: Y[n,0];
 {|t>n && n==0}: Y[n,0];
 {|t>n && n>0 && Z[n]==2}: Y[n,t-n]-1;
 {|t>n && n>0 && Z[n]==1}: Y[n,t-n]+1;
 esac;
Compiling Alphabets

Alpha(bets) is equational/declarative (single assignment). Compiler analyses:

- Scheduling
- Lifetime (memory allocation)

Static scheduling is undecidable

[SQ’89]

Fallback strategy: demand-driven evaluation

- **Alphabets**: unbounded computations ➔
 (potentially) unbounded memory
Optimizations

- Memory bound analysis
 - To determine the maximum amount of history that needs to be stored – provably bounded, but may be a function of program size parameters

- Speculative evaluation
 - When the termination condition is monotonic:
 - if $\text{cond}(\uparrow)$ becomes false for some \uparrow, it implies that for any $\uparrow' > \uparrow$ the condition $\text{cond}(\uparrow')$ is also false
 - No harm in advancing \uparrow by an extra iteration and then correcting as necessary (needs “checkpointing”)

Colorado State University
Changing target architectures

“JIT” compilation of polyhedral programs: Maximize static compilation, leave as many “tunable” parameters.

- Challenge: hierarchical & parametric tiling: (polyhedral model meets its Waterloo)
Dynamic Resource Allocation

- Long running computationally intensive multi-core program (mixed memory/compute bound)
- Dynamic changes to operating environment
 - Reduction is cache resources
 - Change to number of available processors
 - Faults (in the future)
- Dynamically modify tile sizes
 - Allows adaptation to both changes
 - May need data remapping to improve locality
Generate code (like checkpoint-restart) to

- Execute periodically
 - Evaluate a control decision to determine cost-benefit of changing tile sizes/remapping
 - Myopic decision may lead to regret
 - Probabilistic model of the arrival of dynamic changes to machine state
- Model as a POMDP
Conclusion

- Polyhedral model for affine program analysis – we go beyond that to
 - Dynamic dependences
 - Non-polyhedral iteration spaces
- Optimal control using POMDPs provides a foundation for UAV control
 - Mathematically elegant and rigorous
 - Extensions to target ambiguity