Data Assimilation in Atmospheric CTMs: I. Computational Tools

G.R. Carmichael et al. (U. Iowa)
J.H. Seinfeld et al. (Caltech)

NSF ITR AP&IM 0205198
Information feedback loops between CTMs and observations: data assimilation and targeted meas.

Chemical kinetics
Transport
Meteorology
CTM
Optimal analysis state
Observations

Improve:
- forecasts
- science
- field experiment design
- models
- emission estimates
Best estimate of the state/parameters is obtained by combining multiple sources of information

Model (encapsulating knowledge on the physics, chemistry, thermodynamics, etc)

Background (encapsulating best a-priori knowledge of the state)

Observations (encapsulating new information about reality)

Bayes:

\[
P[y^k | z_0^{k-1} \cdots z_0^{0}] = \frac{P[z_0^{k} | y^k] \cdot P[y^k | z_0^{k-1} \cdots z_0^{0}]}{\int P[z_0^{k} | y] \cdot P[y | z_0^{k-1} \cdots z_0^{0}] dy} = P_R[e_0^{k}] \cdot P_B[y^k] \]

Methods:

4D-Var, EnKF

[Picture from J.L. Anderson]
In the 4D-Var approach D.A. is formulated as a PDE-constrained optimization problem (gradient-based)

\[
\min_{y^0} \psi(y^0) = \frac{1}{2}(y^0 - y^b)^T B^{-1} (y^0 - y^b) + \frac{1}{2} \sum_{k=1}^{N} (H^k y^k - z^k)^T R^{-1}_k (H^k y^k - z^k)
\]

subject to \(y^k = M(t^{k-1}, y^{k-1}, p), \quad k = 1, 2, \ldots \)

Gradient: \(\lambda = \nabla_{y^0} \psi = \left(\frac{\partial \psi}{\partial y^0}\right)^T = B^{-1}(y^0 - y^b) + \sum_{k=1}^{N} \left(\frac{\partial y^k}{\partial y^0}\right)^T (H^k)^T R^{-1}_k (H^k y^k - z^k) \)
Adjoint of stiff chemical kinetics: formulation, challenges, and automatic implementation.
KPP automatically generates simulation and direct/adjoint sensitivity code for chemistry

Chemical mechanism

```plaintext
#INCLUDE atoms

#DEFVAR
O = O; O1D = O;
O3 = O + O + O;
NO = N + O;
NO2 = N + O + O;

#DEFIX
O2 = O + O; M = ignore;

#EQUATIONS { Small Stratospheric }
O2 + hv = 2O               : 2.6E-10*S;
O    + O2 = O3              : 8.0E-17;
O3  + hv = O   + O2      : 6.1E-04*S;
O    + O3 = 2O2            : 1.5E-15;
O3  + hv = O1D + O2    : 1.0E-03*S;
O1D  + O3 = 2O2           : 7.1E-11;
NO   + O3 = NO2 + O2       : 1.2E-02*S;
```

Simulation code

```plaintext
SUBROUTINE FunVar ( V, F, RCT, DV )
   INCLUDE 'small.h'
   REAL*8 V(NVAR), F(NFIX)
   REAL*8 RCT(NREACT), DV(NVAR)
   C A - rate for each equation
   REAL*8 A(NREACT)
   C Computation of equation rates
   A(1) = RCT(1)*F(2)
   A(2) = RCT(2)*V(2)*F(2)
   A(3) = RCT(3)*V(3)
   A(4) = RCT(4)*V(2)*V(3)
   A(5) = RCT(5)*V(3)
   A(6) = RCT(6)*V(1)*F(1)
   A(7) = RCT(7)*V(1)*V(3)
   A(8) = RCT(8)*V(3)*V(4)
   A(9) = RCT(9)*V(2)*V(5)
   A(10) = RCT(10)*V(5)
   C Aggregate function
   DV(1) = A(5)-A(6)-A(7)
   DV(2) = 2*A(1)-A(2)+A(3)-A(4)+A(6)-&A(9)+A(10)
   DV(3) = A(2)-A(3)-A(4)-A(5)-A(7)-A(8)
   DV(4) = -A(8)+A(9)+A(10)
   DV(5) = A(8)-A(9)-A(10)
END
```

[Damian et.al., 1996; Sandu et.al., 2002]
Rosenbrock, Runge-Kutta, Sdirk methods and their adjoints are efficiently implemented by KPP

SAPRC-99
Sparse Jacobian and Hessian

Rosenbrock Method
\(T_{\text{fwd}} \)

\[
\begin{align*}
\mathbf{y}^{n+1} &= \mathbf{y}^n + \sum_{j=1}^{s} m_j \mathbf{k}_j, \\
\mathbf{Y}^i &= \mathbf{y}^n + \sum_{j=1}^{i-1} a_{i,j} \mathbf{k}_j \\
\left[\frac{1}{h^\gamma} \mathbf{I} - \mathbf{J}^n \right] \cdot \mathbf{k}_i &= \mathbf{f}(\mathbf{Y}^i) + \sum_{j=1}^{i-1} \frac{1}{h} c_{i,j} \mathbf{k}_j, \quad 1 \leq i \leq s
\end{align*}
\]

Discrete Adjoint
\(T \approx 2.3 T_{\text{fwd}} \)

\[
\begin{align*}
\left[\frac{1}{h^\gamma} \mathbf{I} - (\mathbf{J}^n)^T \right] \cdot \mathbf{u}_i &= m_i \lambda^{n+1} + \sum_{j=i+1}^{s} \left(a_{j,i} \mathbf{v}_j + \frac{1}{h} c_{j,i} \mathbf{u}_j \right), \quad \mathbf{v}_i = (\mathbf{J}^T(\mathbf{Y}^i)) \cdot \mathbf{u}_i \\
\lambda^n &= \lambda^{n+1} + \sum_{i=1}^{s} \left(\mathbf{H}^n \times \mathbf{k}_i \right)^T \cdot \mathbf{u}_i + \sum_{i=1}^{s} \mathbf{v}_i
\end{align*}
\]

[Sandu et al., 2002]
Runge-Kutta methods and their adjoints are well suited for inverse chemical kinetic problems

RK Method

\[y^{n+1} = y^n + h \sum_{i=1}^{s} b_i f(Y^i), \quad Y^i = y^n + h \sum_{i=1}^{s} a_{i,j} f(Y^j) \]

Continuous Adjoint

\[\lambda^n = \lambda^{n+1} + h \sum_{i=1}^{s} b_i J^T(y^{n+1-c_i h}) \cdot \Lambda^i, \quad \Lambda^i = \lambda^{n+1} + h \sum_{j=1}^{s} a_{i,j} J^T(y^{n+1-c_i h}) \cdot \Lambda^j \]

Discrete Adjoint

\[\lambda^n = \lambda^{n+1} + \sum_{i=1}^{s} \theta^i, \quad \theta^i = h J^T(Y^i) \cdot \left[b_i \lambda^{n+1} + \sum_{j=1}^{s} a_{j,i} \theta^j \right] \]

Consistency: The discrete adjoint of RK method of order \(p \) is an order \(p \) discretization of the adjoint equation. (Proof using elementary differentials of transfer functions).

Stiff behavior. For SPP apply RK with invertible coefficient matrix \(A \) and \(R(\infty) = 0 \). If the cost function depends only on the non-stiff variable \(y \) then \(\lambda_z = 0 \) and \(\lambda_y \) are solved with the same accuracy as the original method, within \(O(\varepsilon) \).

[Sandu et al., 2005]
Methods available in the KPP numerical library

- **FIRK** 3-stage: Radau-2A (ord.5), Radau-1A (ord.5), Lobatto-3C (ord.4), Gauss (ord.6)
- **SDIRK**: 2a, 2b (2s, ord.2), 3a (3s, ord.2), 4a, 4b (5s, ord.4)
- **Rosenbrock**: Ros2, Ros3, Ros4, Rodas3, Rodas4.

Forward

TLM (DDM)

Discrete ADJ
Adjoint for Integral-PDE aerosol dynamic equations: formulation and challenges

- Chemical kinetics
- Aerosols
- Transport
- Meteorology
- Optimal analysis state
- Data Assimilation
- Targeted Observ.
- Observations
- Improved:
 - forecasts
 - science
 - field experiment design
 - models
 - emission estimates

Emissions

CTM

DDDAS@ICCS 2007
Beijing, May 29, 2007
Populations of aerosols (particles in the atmosphere) are described by their mass density.

Aerosol dynamic equation - IPDE

\[
\frac{\partial q_i}{\partial t} = \int_0^m \beta(m',m-m')q_i(m',t) \frac{q(m-m',t)}{m-m'} \, dm' \\
- q_i \int_0^\infty \beta(m,m') \frac{q(m',t)}{m'} \, dm' \\
+ H_i q - \frac{\partial}{\partial m} (m H q_i) + m_i S - L q_i + R_i(q)
\]

\[
q_i(m,t = t^0) = q_i^0(m), \quad 1 \leq i \leq n, \\
q_i(m = 0,t) = 0, \quad q_i(m = \infty, t) = 0.
\]
Adjoint aerosol dynamic models are needed to solve inverse problems

\[
\frac{\partial \lambda_i}{\partial t} = -\int_{0}^{\infty} \beta(m, m') (m')^{-1} [\lambda_i(m + m', t) - \lambda_i(m, t)] q(m', t) \, dm' + L \lambda_i \quad t_{k-1} \leq t \leq t_k
\]

Continuous adjoint equation

\[
\begin{align*}
-\int_{0}^{\infty} \beta(m, m') m^{-1} & \sum_{j=1}^{n} [\lambda_j(m + m', t) - \lambda_j(m, t)] q_j(m', t) \, dm' - \sum_{j=1}^{n} H_j \lambda_j - m H \frac{\partial \lambda_i}{\partial m} \\
\lambda_i(m, t_N) &= 0, \quad \lambda_i(m, t_k^+) = \lambda_i(m, t_k^-) + h_i T R_k^{-1} (y_k - h(q_k)) \\
\lambda_i(m, t_0) &= \lambda_i(m, t_+^0) + p_i T B^{-1} (p - p^B), \quad \lambda_i(0, t) = 0.
\end{align*}
\]

Observations of density in each bin allow the recovery of initial distribution and of parameters

[Sandu et. al., 2005; Henze et. al., 2004]
Discrete adjoint models for numerical advection: formulation and challenges

Chemical kinetics

Aerosols

CTM

Data Assimilation

Targeted Observ.

Optimal analysis state

Emissions

Improved:
• forecasts
• science
• field experiment design
• models
• emission estimates

Observations

Improved:

Meteorology

Beijing, May 29, 2007
Discrete adjoints of advection numerical schemes can become pointwise inconsistent with the adjoint PDE.

\[w(x) = 0.5 - 0.5X \]

Change of forward scheme pattern:
- Change of upwinding
- Sources/sinks
- Inflow boundaries scheme
Example: 3rd order upwind FD

Active forward limiters act as pseudo-sources in adjoint
Example: minmod

[Liu and Sandu, 2005]
The 4D-Var tools have been implemented in parallel adjoint STEM and are being applied to real data.

Chemistry: KPP
- Forward: sparse Rosenbrock, RK, LMM
- DDM sensitivity (Rosenbrock, LMM)
- Discrete adjoints: Rosenbrock
- Continuous adjoints: Rosenbrock, RK, LMM

Aerosols: 0-D, not yet 3-D

Transport:
- Forward: upwind FV, FD, FE
- Adjoints for linear upwind FD

Parallelization: with PAQMSG

[Sandu et.al., 2003, 2004; Carmichael et. al., 2003, 2004]
Dynamic integration of chemical data and atmospheric models is an important, growing field

- **Current state of the art:**
 - the tools needed for 4d-Var chemical data assimilation are in place:
 - (adjoints for stiff systems, aerosols, transport; singular vectors, parallelization and multi-level checkpointing schemes, models of background errors)
 - their strengths demonstrated using real (field campaign) data; ambitious science projects are ongoing
 - ensemble-based chemical data assimilation is new, but promising

- **Computational tools are being widely adopted:**
 - EPA (CMAQ), JPL (GEOS–Chem), NCAR and NOAA (WRF-Chem), Canadian Meteorological Centre, Max Planck Institute Germany (MESSY), University of Koeln (EURAD - EURopean Air Pollution Dispersion)