Dynamic Data-Driven Application Systems


Data-Driven Computational Sciences 2020 Workshop

Part of the ICCS 2020 Conference, June 3-5, 2020 in Amsterdam, The Netherlands

See http://www.iccs-meeting.org/iccs2020 and http://www.dddas.org/ddcs2020.html

Workshop proceedings http://www.ddas.org/iccs2020.html


In the late 1960's, simple data assimilation revolutionarily transformed science in fields based on satellite data. Both NASA and NCAR produced stunningly revolutionary applications. The oil and gas industry jumped on this concept in the early to mid 1970's creating commercial data assimilation pipeline products by multiple vendors that were used in more than 165 countries in short order. This led to intelligent data assimilation being the normal way to operate a reservoir or pipeline networks by the 1990's by all of the major oil producers. Since the early 2000's, government grant agencies (e.g., the National Science Foundation) applied this concept to update numerous fields creating astonishing improvemnts in simulations that continue to this day in many application areas.

A data-driven computational system is the integration of a simulation with dynamically and intelligently assimilated data, multiscale modeling, computation, and a two way interaction between the model execution and the data acquisition methods (see the DDDAS Scientific Community Web Site, http://www.dddas.org). The workshop will present opportunities as well as challenges and approaches in technology needed to enable Data-Driven Computational Science capabilities in applications, relevant algorithms, and software systems. All related areas in Data-Driven Sciences are included in this workshop, including CyberPhysical Systems like HealthKit on iPhones and iPads as well as similar systems developed by Intel, Google, and Microsoft for phones and tablets, Internet of Things (IoT), Cloud of Things (CoT), and Data Intensive Scientific Discovery (DISD).

A recent example is a tranformative way of landing airplanes on time and reduce delays and cancellations is a process known as Time Based Flow Systems (TBFS) [UKNATS]. It spaces planes by space instead of by time. The first of these systems was developed for Heathrow Airport by Lockheed Martin for the British National Air Traffic Services and fully deployed in May, 2015. It has reduced flight cancellations due to wind by exactly 100% and flight delays by approximately 40% during the period of May - August, 2015.


From 2004 through 2014 there was a Dynamic Data-Driven Application System (DDDAS) Workshop at ICCS. In 2015 the workshop split into 1) for projects funded by the U.S. Air Force Office of Scientific Research (AFOSR), and 2) for more general papers. The current workshop is open to all and strongly encourages new developments related to large data, streaming data, machine learning and data reduction strategies. We will accept great research in all of data driven computional sciences based on 2-3 unbiased referee reports.

Important Dates*: Note that for the past conferences that the dates have been extended by the ICCS organizers.

15 December 2019 Creation of paper title and abstract on ICCS 2020 conference web site
21 February 2020 Submission of full paper
12 March 2020 Notification of acceptance or revision requirements for acceptance
2 April 2020 Camera ready version of paper submitted
12 March - 2 April 2020 Author registration (your accepted paper will be dropped on 5 April 2020 if you are not registered)
3-5 June 2020 ICCS 2020
* Last updated on 01 July 2019. Date changes coming in 2019-2020.


Craig Douglas (University of Wyoming, USA)
Abani Patra (Tufts University, USA)
Ana Cortés (Universitat Autònoma de Barcelona, Spain)
Robert Lodder (University of Kentucky, USA)
Han Yu (Nanjing University of Posts & Telecommunications, China)
Hiroshi Fujiwara (Kyoto University, Japan)

DDDAS 2020 Virtual Proceedings


This website has been established and is maintained by Prof. Craig C. Douglas.
©2014-2020 by www.dddas.org and Craig C. Douglas